Электромиографическая оценка нейро-мышечной координации жевательных мышц у пациентов с протезированием на имплантатах. Методы исследования биомеханики жевательной системы Физические и физиологические основы электромиографии

Питание 13.09.2022
Питание
1

Проведено исследование функционального состояния собственно жевательных и височных мышц у пациентов с нормальной окклюзией и с аномалиями прикуса при проведении общежевательной пробы. При проведении исследования применялась методика поверхностного наложения электродов, отрабатывалась жевательная проба методики «жевание» жевание общее. Оценивались следующие характеристики: - средняя амплитуда (мкВ); - время покоя (сек). Данные характеристики были рассчитаны для: - правой височной мышцы; - правой жевательной мышцы; - левой височной мышцы; - левой жевательной мышцы. Повышенная электрическая активность собственно жевательных и правой височной мышц свидетельствует о наличии мышечной дисфункции у пациентов с аномалиями прикуса. Исследование показало, что у пациентов 1-ой группы в сравнении с пациентами 2-ой группы с обеих сторон выявлено меньшее мышечное утомление, что способствует осуществлению функции жевания в большем объеме. Результаты поверхностной электромиографии как метода функционального исследования на всех этапах ортодонтического лечения могут служить объективным показателем функционального состояния жевательных мышц и эффективности проводимого лечения.

электромиография

общежевательная проба

средняя амплитуда колебания

время покоя

нарушения окклюзии

жевательные мышцы

аномалии прикуса.

1. Данилова М.А. Динамика показателей ЭМГ-исследования в процессе лечения миофункциональных нарушений у детей в период прикуса временных зубов /М.А. Данилова, Ю.В. Гвоздева, Ю.И. Убирия // Ортодонтия. – Москва, 2010. – № 4. – С.3-5.

2. Данилова М.А. Аномалии зубных рядов: доклиническая диагностика дисфункции височно-нижнечелюстного сустава /М.А. Данилова, П.В. Ишмурзин // Стоматология детского возраста и профилактика. – Москва, 2008. – № 4. – С. 34-37.

3. Хайрутдинова А.Ф., Герасимова Л.П., Усманова И.Н. Электромиографическое исследование функционального состояния жевательной группы мышц при мышечно-суставной дисфункции височно-нижнечелюстного сустава / А.Ф. Хайрутдинова, Л.П. Герасимова, И.Н. Усманова // Казанск. мед. журн. – 2007. – Т. 88, № 5. – С. 440-443.

4. Okeson J.P. Managemrnt of Temporomandibular Disorders and Occlusion. – St. Louis, Missouri. Mosby, 2003. – 671 p.

5. Itoh K.I., Hayashi T. Functions of masseter and temporalis muscles in the control of temporomandibular joint loading – a static analysis using a two-dimensional rigid-body spring model / K.I. Itoh, T. Hayashi // Front Med biol. – 2000. – Vol. 10, № 1. – P. 17-31.

В процессе проводимого ортодонтического лечения, в не зависимости от его объема, всегда наступает перестройка окклюзионных контактов в виде изменения фиссурно-бугоркового соотношения зубов-антагонистов за счет увеличения или уменьшения площади соприкосновения жевательных поверхностей . Для достижения устойчивого результата ортодонтического лечения необходимо добиться скоординированной работы жевательных мышц. Жевание, как нервно-мышечная функция организма, включает многочисленные движения нижней челюсти и преобразование жевательной нагрузки.

Колебания биопотенциалов, обнаруживаемых в мышце при любой форме двигательной реакции, является одним из наиболее точных показателей функционального состояния мышцы .

Электромиография жевательных мышц основана на регистрации биопотенциалов действия мышечных волокон, функционирующих в составе двигательных единиц. Прежде чем изучать биоэлектрическую активность жевательных мышц, необходимо четко понимать строение моторной единицы. Моторная единица состоит из мотонейрона и группы мышечных волокон, иннервируемых этим мотонейроном. Количество мышечных волокон, иннервируемых одним мотонейроном, неодинаково в различных мышцах .

В жевательных мышцах на один мотонейрон приходится около 100 мышечных волокон, в височной - до 200, в мимических мышцах моторные единицы более мелкие, они включают до 20 мышечных волокон. В небольших мимических мышцах это соотношение еще меньше, что обеспечивает высокий уровень дифференциации сокращений мимических мышц, обусловливающих широкую гамму мимики .

Исследование жевательных мышц как в норме, так и при патологии прикуса вызывает особый интерес, так как функциональное состояние жевательных мышц является индикатором окклюзионных нарушений в зубочелюстной системе . Основными достоинствами поверхностной электромиографии как метода функционального исследования являются: малоинвазивность, доступность, возможность качественной регистрации исследования в виде таблиц и диаграмм, что является важным лигитимным документом протокола ортодонтического лечения и позволяет проводить сравнительную характеристику исследуемых мышц по всем показателям в динамике ортодонтического лечения.

Результат ортодонтического лечения в основном зависит от характера функциональной перестройки жевательных и мимических мышц. При скоординированной перестройке миодинамическое равновесие между мышцами-антагонистами и синергистами способствует стабильному результату ортодонтического лечения в ретенционном периоде.
Следовательно, работа с электромиографом является одним из основных и обязательных условий для врача-ортодонта на всех этапах проводимого ортодонтического лечения .

Цель исследования: исследование функционального состояния жевательных мышц у пациентов с постоянным прикусом в норме и с нарушениями окклюзии.

Материал и методы исследования

На базе кафедры ортодонтии Омского государственного медицинского университета проведены исследования 80 пациентов без сопутствующей соматической патологии. Возраст пациентов составил от 23 до 45 лет. От всех пациентов получено добровольное письменное согласие на проведение исследования. Первая группа (пациенты с постоянным прикусом без нарушений окклюзии и сопутствующей соматической патологии) составила 35 человек, вторая группа (пациенты с постоянным прикусом с нарушениями окклюзии в сагиттальной и вертикальной плоскостях без сопутствующей соматической патологии) составила 45 человек. Средний возраст в группах составил соответственно 22,0±1,2 года и 31,2±1,9 лет. По полу группы не отличались (p>0,05). Биометрический анализ осуществлялся с использованием пакета STATISTICA-6 и возможностей программы Microsoft Excel. Количество пациентов, необходимых для аналитического исследования типа «случай - контроль», было рассчитано с помощью приложения StatCalc программы Epi Info (версия 6) с учетом 95 %-ой надежности исследования, 80 %-ой мощности, соотношения групп 1:1 и составило не менее 30 пациентов в каждой группе. Во всех процедурах статистического анализа критический уровень значимости р принимался равным 0,05.

Для сравнения количественных данных двух независимых групп в большинстве случаев использован U-критерий Манна - Уитни (в случае распределения признаков, отличного от нормального), или t-критерий (при наличии нормального распределения и равенства дисперсий выборок).

Проверка нормальности распределения производилась с использованием критерия Шапиро - Уилки, проверка гипотез о равенстве генеральных дисперсий - с помощью F-критерия Фишера. Под выражением вида 17,9 (13,4 - 21,4) понималось значение медианы показателя (P50) и интерквартильного размаха (P25-P75).

Электромиография (ЭМГ) выполнена на четырехканальном полнофункциональном электромиографе «Synapsis» всем пациентам в группах исследования. При проведении исследования применялась методика поверхностного наложения чашечковых электродов, отрабатывалась жевательная проба методики «жевание» - жевание общее. Чашечковые электроды фиксировались на моторных точках исследуемых мышц - участках наибольшего напряжения мышц, которые определялись пальпаторно. Запись биопотенциалов правой и левой височной мышц осуществлялась с I и III каналов соответственно. Запись биопотенциалов правой и левой жевательных мышц - с II и IV каналов соответственно.

Всем пациентам был определен мандибулярный рефлекс при сжатии челюстей в центральной окклюзии для диагностических целей.

Оценивались следующие характеристики:

Средняя амплитуда биопотенциалов(мкВ);

Время покоя (сек);

Данные характеристики были рассчитаны для:

Правой височной мышцы;

Правой жевательной мышцы;

Левой височной мышцы;

Левой жевательной мышцы;

Результаты исследования и их обсуждение

Приведены результаты электромиографии пробы «жевание общее» в группах сравнения по мышцам M. temporalis (D), M. masseter (D), M. temporalis (S), M. masseter (S).

По результатам электромиографии пробы «жевание общее» медиана показателя «средняя амплитуда колебания» больше по M. temporalis (D) и M. Masseter (S) в 1-ой группе в сравнении с 2-ой группой, различия статистически значимы (p=0,039). По M. mаsseter (D) эти величины также имеют статистически значимые различия (p=0,085) в пользу преобладания показателя у пациентов из 1-ой группы.

Медиана показателя «время покоя» больше по M. temporalis (D), M. masseter (D), M. temporalis (S) в группе 1 в сравнении с группой 2, различия статистически значимы (p=0,014, p=0,020, p=0,011 соответственно) (таблица).

Показатели ЭМГ в пробе «жевание общее» в группах сравнения

(U-критерий Манна-Уитни; t-критерий Стьюдента)

Показатель ЭМГ - жевание общее

Группа 1 (n=35)

Группа 2 (n=45)

Ср. ампл.(мкВ)

1. masseter, D ОБЩ

СА 2. temporalis, D жевание ОБЩ

СА 3.temporalis, S ОБЩ

СА 4.masseter, S ОБЩ

Время покоя (сек) 1.temporalis, D жевание ОБЩ

ВП 2. masseter, S ОБЩ

ВП 3.temporalis, S ОБЩ

ВП 4. masseter, D ОБЩ

Жевание общее

Рис. 1.Медианы средней амплитуды колебания биопотенциалов при ЭМГ (проба жевание общее) в группах сравнения (мкВ)

Установлено, что показатель «средняя амплитуда колебания» для левой собственно жевательной и правой височной мышц был достоверно больше у пациентов 1-ой группы исследования (рис. 1). Показатель «время покоя» для правой и левой височных и правой собственно жевательной мышц достоверно выше аналогичного показателя у пациентов 2 группы исследования (рис.2).

Рис. 2. Медианы показателя «время покоя» при электромиографии (проба жевание общее) в группах сравнения

Исследование показателя «время покоя» в группах сравнения позволяет утверждать, что у пациентов 2 группы мышечное утомление наступало значительно быстрее, о чем свидетельствует меньший показатель времени покоя, следовательно, жевательные мышцы находились в постоянном напряжении (рис. 2).

Заключение

Повышенная электрическая активность собственно жевательных и правой височной мышц свидетельствует о наличии мышечной дисфункции у пациентов с постоянным прикусом в сочетании с нарушениями окклюзии.

Исследование показало, что у пациентов 1-ой группы в сравнении с пациентами 2-ой группы с обеих сторон выявлено меньшее мышечное утомление (более высокий показатель времени покоя у пациентов 1 группы), что способствует осуществлению функции жевания в большем объеме за счет адекватного восстановления тонуса и биоэлектрической активности мышечных волокон после оказанной нагрузки.

Амплитуда мышечного сокращения является эквивалентом силовой характеристики мышцы . Проанализировав длительность биоэлектрической активности и биоэлектрического покоя при мышечном расслаблении, непосредственно можно сделать вывод о процессах возбуждения и торможения, а, следовательно, о выносливости мышечного волокна.

Межвидовые различия жевательных мышц значительны, что выявляется уже при поверхностной оценке объема жевательной и височной мышц. Согласно закономерности, чем больше выражен передний и латеральный компоненты жевательных движений, тем больше объем жевательных мышц .

Координация сокращений основных и вспомогательных жевательных мышц регулируется рефлекторно. Степень жевательного давления на зубы контролируется проприоцептивной чувствительностью пародонта. Сила мышц направлена дорзально, поэтому наибольшие усилия жевательные мышцы способны развивать в самых дистальных отделах зубных рядов.

Электромиография как один из основных методов функционального исследования позволяет изучать скоординированность работы мышц-антагонистов и синергистов до начала, в процессе а также в ретенционном периоде ортодонтического лечения. Кроме того, сравнительная электромиография позволяет установить сторону и тип жевания у конкретного пациента.

Результаты поверхностной электромиографии как метода функционального исследования на всех этапах ортодонтического лечения могут служить объективным показателем функционального состояния жевательных мышц и эффективности проводимого лечения.

Библиографическая ссылка

Худорошков Ю.Г., Карагозян Я.С. ОЦЕНКА ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ ЖЕВАТЕЛЬНЫХ МЫШЦ У ПАЦИЕНТОВ С ПОСТОЯНННЫМ ПРИКУСОМ В НОРМЕ И С НАРУШЕНИЯМИ ОККЛЮЗИИ // Современные проблемы науки и образования. – 2016. – № 4.;
URL: http://сайт/ru/article/view?id=25013 (дата обращения: 01.02.2020).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Электромиографию применяют в терапевтической, хирургической, ортопедической стоматологии, ортодонтии и стоматоневрологии.

Применение в терапевтической стоматологии . Электромиографические исследования проводят при пародонтозе и периодонтите для регистрации изменений регуляции силы сокращения жевательной мускулатуры, так как при этих заболеваниях возникают функционально-динамические расстройства жевательного аппарата. Электромиографию проводят в комплексе с гнатодинамометрическими пробами, которые позволяют сопоставить интенсивность возбуждения мышц с их силовыми эффектами.

Во время жевания у больных с воспалительно-дистрофической формой пародонтоза и с периодонтитом имеются нарушения правильного чередования периодов биоэлектрической активности и биоэлектрического покоя. Отмечается снижение биоэлектрической активности жевательных мышц и значительное удлинение динамического цикла жевания по сравнению с показателями биоэлектрической активности жевательных мышц интактного жевательного аппарата. Степень изменения биоэлектрической активности находится в прямой зависимости от стадии пародонтоза.

Применение в хирургической стоматологии . При оперативных вмешательствах применяют все три метода электромиографических исследований: глобальный, локальный и стимуляционный. Глобальную электромиографию применяют при переломах челюстей, воспалительных процессах челюстно-лицевой области (флегмоны, абсцессы, периостит, остеомиелит) при миопластических операциях по поводу стойких параличей мимической мускулатуры, языка и т. п..

При травмах челюстей ЭМГ служит для объективной оценки степени нарушения функции жевательной мускулатуры, а также для контроля сроков реабилитации больных. Переломы челюстей приводят к значительному снижению биоэлектрической активности жевательных мышц (особенно при двойных переломах в области угла нижней челюсти) и появлению тонической активности в покое в височных мышцах, сохраняющейся длительное время.

При воспалительных процессах челюстно-лицевой области возникают существенные изменения электромиографических показателей жевательной мускулатуры. При разлитом воспалении, а также при локализации очага в области жевательных мышц отмечают значительное снижение их биоэлектрической активности на стороне поражения. Типичным примером этой патологии являются флегмоны, расположенные в субмассетериальной, крылочелюстной, подвисочной и крылонебной областях. Причинами снижения биоэлектрической активности в жевательных мышцах в этих случаях, очевидно, являются рефлекторное (болевое) ограничение сокращения мышц и нарушение проведения нервных импульсов из-за отека тканей.

При электромиографических исследованиях всегда необходимо (особенно при функциональных пробах) учитывать состояние пародонта и не повторять ошибок некоторых авторов, не определявших функцию пародонта.

При миопластических операциях по поводу стойких параличей мимических мышц и языка с помощью ЭМГ определяют (до операции) полноценность иннервации пересаживаемой мышцы и восстановление ее функции после операции. Электромиографическая обратная связь в этих случаях может служить средством стимуляции восстановления функции пересаженной мышцы.

При заболеваниях височно-нижнечелюстного сустава электромиографическое исследование служит для объективной оценки симптомов заболевания в виде удлинения периода «молчания» жевательных мышц, а также для контроля эффективности лечения (рис. 59).

При дистрофиях и гипертрофиях жевательных мышц применяют локальную электромиографию, помогающую дифференцировать миопатии от нейропатий.

В стоматоневрологии и хирургической стоматологии при травматических и инфекционных повреждениях нервов челюстно-лицевой области, содержащих двигательные волокна, локальную электромиографию применяют для объективного выявления признаков денервации мышц и ранних признаков начавшейся реиннервации мышц.

Стимуляционную электромиографию применяют в стоматоневрологии и хирургической стоматологии при повреждениях лицевого нерва для определения его проводимости и скорости распространения возбуждения по нему, а также количественного определения степени пареза отдельных ветвей и соответствующих мышц. Для определения степени пареза мимической мускулатуры при повреждениях лицевого нерва используют также глобальную электромиографию.

Применение в ортопедической стоматологии . Интерференционную ЭМГ применяют для изучения биоэлектрической активности жевательных мышц при полном отсутствии зубов и в процессе адаптации к полным съемным протезам. Протезирование полными съемными протезами приводит к увеличению биоэлектрической активности жевательных мышц во время жевания с протезами и после их снятия. В процессе адаптации к полным съемным протезам укорачивается время всего жевательного периода за счет уменьшения количества жевательных движений и времени одного жевательного движения. Адаптация жевательных мышц к новым условиям по показателям ЭМГ происходит в первые 6 мес пользования протезами.

При повышении высоты прикуса после ортопедического лечения патологической стираемости зубов с помощью ЭМГ контролируют допустимые границы повышения прикуса. Увеличение высоты центральной окклюзии в допустимых пределах (8-10 мм) приводит к тонической биоэлектрической активности височных мышц в покое. Появление такой же активности в собственно жевательных мышцах является симптомом чрезмерного (свыше 10 мм) повышения прикуса. Таким образом, электромиография обладает возможностями для объективного функционального определения оптимальной высоты центральной окклюзии.

Электромиографическое исследование позволяет объективно оценивать эффективность выравнивания окклюзии, контролировать согласованность (координацию) работы симметричных мышц.

Стоматология детского возраста и ортодонтия . Интерференционную ЭМГ применяют для контроля перестройки координационных соотношений функций височных и жевательных мышц при лечении аномалий прикуса. Выявляют «патологическое» участие мимических мышц в некоторых естественных актах, например, глотании и оценки эффективности лечебной физкультуры, направленной на снижение этой активности.

Локальную электромиографию проводят для изучения биоэлектрической активности мышц мягкого неба у детей в норме и при врожденных аномалиях развития. Величина отклонения биоэлектрической активности мышц мягкого неба при его расщелинах зависит от степени нарушения функциональных свойств мышц; снижение функциональной активности мышц имеет здесь миогенный характер. После оперативного устранения расщелин мягкого неба электромиографию применяют для определения прогноза возможности восстановления речи и для контроля в процессе тренировки мышц с помощью специального комплекса миогимнастических упражнений.


Электромиографию начинали с предварительной подготовки больного к исследованию, разъясняли ему сущность исследования. Для снятия излишней напряженности в мышцах,



Рис. 74. Компьютерные томограммы двух пациентов с артрозами ВНЧС в двух проекциях (сагиттальной, фронтальной).


которая может возникнуть в результате волнения, страха и т. л., больному разъясняли о безболезненности и безвредности всех манипуляций.
Мы пользовались шестиканальным электромиографом фирмы “Медикор", который не требует специальной тиранизированной камеры (рис. 76). Снижение помех, создаваемых электрическим полем сети переменного тока, достигалось заземлением пациента через корпус электромиографа, который заземлен с общим контурным заземлением. Отведение биопотенциалов проводили накожными биполярными электродами. Расстояние между электродами было всегда постоянным и равным 15 мм, поскольку они были фиксированы пластмассой. Электроды укреплялись в центре моторных точек височных (переднее брюшко) и собственно жевательных мышц.
До настоящего времени исследователи определяли моторную точку пальпаторно и фиксировали электроды с помощью резиновой манжетки и липкого медицинского пластыря. Для идентичной записи электромиограмм в различные сроки исследования весьма важным моментом является фиксация биполярных электродов в одном и том же участке моторной точки височных и собственно жевательных мышц. С целью идентификации записи электромиограмм в разные сроки исследования в процессе лечения больных с патологией ВНЧС нами совместно с А.И. Довбенко и Н.Ю. Сеферян предложен аппарат для электромиографии височных и собственно жевательных мышц (рис. 76). Он состоит из крестовины, головного фиксатора, фиксаторов с ушными оливами, фиксатора переносицы, фиксатора затылка. В фиксаторе ушной оливы над ушной раковиной в области проекции височных мышц подвижно устанавливается горизонтальная пластинка со шкалой и плоской пружиной, а под ушной раковиной на этом же рычаге прикреплен сектор со шкалой, снабженный пружинящей стрелкой с продольным пазом и делениями. Вначале пальпаторно определяют примерную локализацию моторных точек височных и собственно жевательных мышц. Кожную поверхность в данных участках тщательно обрабатывают спиртом и эфиром. Для достижения лучшего контакта “электрод - кожа" и снижения межэлектродпого сопротивления электроды смачивают 0,9% раствором хлористого натрия. Электроды устанавливают под плоской пружиной с делениями в области височных мышц и пол пружинящей стрелкой щечного полуовального сектора. Затем визуально контрольным прибором, находящимся на передней панели электромиографа, перемещая электрод по пазу пружинящих фиксаторов, находят точную локализацию центра моторной точки и контролируют качество контакта с кожей. Место локализации электродов точно фиксируют с помощью шкалы с делениями и заносят в протокол исследования.
При правильном наложении электродов в состоянии относительного физиологического покоя нижней челюсти электромиограмма имеет вил изоэлектрической линии. При максимальном сжатии челюстей появление биоэлектрической активности перед записью функциональных проб проверяют и настраивают аппаратуру. Переключатель усилителя устанавливают в положение 50 мм/сек, просят исследуемого произвести несколько раз сжатие и расслабление челюстей. Регулируя переключателем, следим, чтобы максимальная амплитуда осцилляций не превышала рамки экрана или была чрезмерно малой. Замер амплитуды производят с помощью масштабной линейки. После предварительной настройки аппаратуры приступают к изучению функциональной деятельности жевательной мускулатуры.
При анализе полученных данных проводилась качественная и количественная оценка электромиограмм:
а) переход фазы биоэлектрической активности (БЭА) в фазу биоэлектрического покоя (БЭП) резкий или с продолжением возбуждения в фазе покоя (миологическая задержка);
б) степень размаха амплитуды колебаний во время акта жевания и при максимальном сжатии челюстей в положении центральной окклюзии;
в) продолжительность акта жевания и акта глотания в секундах;
г) ритмичность, синхронность сокращения жевательных мышц, наличие осцилляций как в состоянии относительного физиологического покоя жевательных мышц, так и в фазе БЭП во время акта жевания. Количественному подсчету подвергали амплитудные показатели элек- тромиограмм во время акта жевания и сжатия челюстей (рис. 77).
Каждое смыкание зубных рядов отражается появлением биопотенциалов с различной степенью амплитуды колебаний. Величина амплитуды биопотенциалов зависит от степени сокращения жевательных мышц. При регистрации произвольного акта жевания с раздражителем (1 см3 черного хлеба) у исследуемых контрольной группы отмечается четкий переход фазы биоэлектрической активности (БЭА) в фазу биоэлектрического покоя (БЭП) всех исследуемых групп мышц. С целью получения исходных и сопоставления электромиогра- фических данных, полученных на больных с патологией сустава с показателями нормы, дополнительно проводилось обследование височных и жевательных мышц у 10 практически здоровых лиц в возрасте от 16 до 36 лет с интактными зубами и ортогнастическим прикусом (контрольная группа).

Электромиография жевательных и мимических мышц позволяет определить изменения функционального состояния мышц в фазе жевательного движения, а также при мимических нагрузках. Данный метод позволяет объективно оценивать степень выраженности патологического процесса при аномалиях окклюзии, протезировании зубов, при болевых синдромах челюстно-лицевой области и смежных областях и т.п. Данные, полученные в ходе исследования, являются объективными критериями правильности проведённого протезирования, ортодонтической коррекции, изменения высоты прикуса. Кроме того, они позволяют стоматологу выявить пограничные патологические процессы, которые впоследствии могут привести к развитию болевых синдромов челюстно-лицевой области.

При анализе показателей силы, развиваемой при мышечном сокращении необходимо фокусировать внимание на противодействиях силе, которые для упрощения могут быть сведены к окклюзионному противодействию (силе сжимания) и противодействию связи (сокращениям нагружающим височно-нижнечелюстной сустав). В нормальном состоянии действие и противодействие уравновешиваются, эргономика системы находится в компенсированном состоянии (аномальная нагрузка на периодонт, эрозии при стачивании зубов и т.д.).

Интуитивно понятно, что стачивание будет влиять на функцию со временем одинаково на все компоненты, но изменение даже компенсированное развиваемого усилия будет увеличивать нагрузку на систему, и вызывать при ухудшении ситуации нарушение динамического равновесия, усугубляя износ компонентов.

Например, возникновение торсионной нагрузки на нижней челюсти вызывает перегрузку суставных элементов и одновременно аномальную стимуляцию пародонтальных рецепторов, которые адаптируются к более высокому порогу и не реагируют, следовательно способствуют поддержанию аномальной нагрузки. Компенсаторные изменения афферентных окончаний изменяют центры двигательного равновесия. Такие функциональные изменения, сохраняющиеся длительное время, вызываю органические изменения (суставной хруст, пародонтальные боли, патологическая стираемость, миофасцииты и др.).

Следуя этой же логике можно охарактеризовать активность мышц на основе их анатомического расположения. При этом височная мышца входит в передней части в жевательную и проявляет постуральную активность, то есть эта мышца предназначена для уравновешивания гравитационных сил, действующих на нижнюю челюсть. Кроме того, она отвечает за движение, которое перемещает нижнюю челюсть в положение покоя, близкое к положению окклюзии, для достижение которого необходимо участие жевательной мышцы в виде изометрического сокращения при сжатии. Зная характеристики кривизны окклюзионной плоскости (кривая Шпея в сагиттальной плоскости и кривая Вилсона во фронтальной) можно предположить последовательное установление контактов до достижения полного смыкания.

Дентальные межбугорковые контакты в передних отделах незначительно опережают таковые в задних, расположенных в непосредственной близости двигательной линии жевательной мышцы.

Окклюзионный контакт, преобладающий в антеролатеральных отделах (на первом и втором премоляре) определяет передний центр тяжести окклюзии и связан с преобладанием мышечной активности жевательной мышцы.

Таким образом, поскольку среднее значение выражено в мкВ за определенный временной интервал, оно может помочь охарактеризовать область преобладающих контактов и окклюзионный центр тяжести.

Статья предоставлена компанией "Валлекс М"

Электромиография (ЭМГ) — объективный метод исследования нейромышечной системы путем регистрации электрических потенциалов жевательных мышц, позволяющий оценить функциональное состояние зубочелюстной системы.

Различают три основных метода ЭМГ:
1) интерференционный (поверхностный, суммарный, глобальный), при котором электроды накладывают на кожу;
2) локальный, при котором исследование проводят с применением игольчатых электродов;
3) стимуляционный, при котором проводят измерение скорости распространения электрического импульса от места его нанесения до другого участка стимулируемогонерва или иннервируемой им мышцы.

Для суждения о состоянии жевательных мышц достаточно проведение интерференционной ЭМГ с помощью поверхностных электродов.

Методика ЭМГ-исследования. ЭМГ-исследованиям жевательных мышц при стоматологических заболеваниях посвящено много работ [Персии Л.С, Хватова В.А., Ерохина И.Г., 1982; Петросов Ю.А., 1982; Хватова В.А., 1985; Малевич О.Е., Житний Н.И., 1991; Гречко В.Е. и др., 1994; Онопа Е.Н. и др., 2003; Bessette R. et al., 1971; FreesmeyerW., 1993].

Рис. 3.57. ЭМГ-активность жевательных (1), височных (2), латеральных крыловидных (3) и надподъязычных мышц (4) при сжатии челюстей (А) и заданном жевании (Б) в норме. а — справа, б — слева.

Электрическую активность жевательных мышц регистрируют одновременно с двух сторон. Для отведения биопотенциалов используют поверхностные чашечковые электроды. Электроды фиксируют в области моторных точек (участки наибольшего напряжения мышц, которые определяют пальпаторно).

Рис. 3.58. Время рефлекторного торможения активности правой (а) и левой (б) жевательных мышц в норме.

Для записи ЭМГ применяют функциональные пробы. Регистрируют ЭМГ в физиологическом покое нижней челюсти, при сжатии челюстей в привычной окклюзии, произвольном и заданном жевании (рис. 3.57).
Кроме того, изучают мандибулярный рефлекс (при постукивании неврологическим молоточком по подбородку по средней линии) при сжатии челюстей в положении центральной окклюзии.

Мандибулярный рефлекс — время рефлекторного торможения активности жевательных мышц, имеет диагностическое значение (рис. 3.58).

При анализе ЭМГ определяют следующие показатели: среднюю амплитуду биопотенциалов, количество жевательных движений в одном жевательном цикле, продолжительность одного жевательного цикла, время биоэлектрической активности (БЭА) и биоэлектрического покоя (БЭП) жевательной мускулатуры в фазе одного жевательного движения. Полученные данные сравнивают с показателями нормальной ЭМГ-активности жевательной мускулатуры.

При электромиографии наружных крыловидных мышц используют концентрические игольчатые электроды. Каждый электрод — тонкая полая игла диаметром 0,45 мм, в которую введена проволока, изолированная от внешней оболочки на всем протяжении за исключением кончика. Перед введением игольчатые электроды выдерживают 30 мин в специальном стерилизаторе.

Рис. 3.59. Момент записи ЭМГ наружных крыловидных мышц. Игольчатые электроды введены непосредственно в мышцу вблизи шейки суставного отростка (собственная методика).

В литературе описаны два способа введения электродов — внутриротовой и внеротовой. Внутриротовой метод технически трудно выполнить, он не точен и не дает возможность изучить активность мышц во время жевания. Внеротовой метод введения игольчатых электродов через полулунную вырезку нижней челюсти не позволяет осуществить запись ЭМГ во время функции жевания, так как игольчатый электрод проходит через сухожилие жевательной мышцы.

Разработан метод введения игольчатого электрода непосредственно в мышцу вблизи шейки суставного отростка нижней челюсти (В.А.Хватова, А.А.Никитин А.А. и др.1)
После обработки кожи лица спиртом электрод вводят в мягкие ткани шейки суставного отростка нижней челюсти, слегка оттягивают на себя, чтобы его рабочая часть находилась в мышце. Такое положение электрода позволяет свободно и безболезненно производить все движения челюсти (рис. 3.59). Осложнение в виде кратковременного ограничения открывания рта наблюдали редко.

В норме отмечаются согласованная функция мышц-синергистов и антагонистов, четкая ритмическая смена фаз БЭА и БЭП. В фазе одного жевательного движения время ЭМГ-активности жевательных, височных и наружных крыловидных мышц меньше, а надподъязычных мышц равно времени ЭМГ «покоя».

В периоде покоя отсутствует спонтанная активность мышц. Средняя амплитуда ЭМГ всех исследуемых мышц при сжатии челюстей меньше, чем при жевании. При произвольном жевании происходит периодическая смена функционального центра, наблюдается перемежающая активность мышц справа и слева. При этом жевательные и наружные крыловидные мышцы более отчетливо реагируют на смену функционального центра, чем височные и надподъязычные мышцы. При заданном жевании на рабочей стороне повышается средняя амплитуда ЭМГ жевательной, височной и надподъязычной мышц, а на противоположной — наружной крыловидной мышцы.

Жевательные и височные мышцы при жевании проявляют синхронную активность, а залпы ЭМГ-активности наружных крыловидных и надподъязычных мышц располагаются между залпами активности жевательных и височных мышц.

В норме при физиологическом покое жевательных мышц ЭМГ-активность отсутствует, в то время как при мышечно-суставной дисфункции такая активность доходит до 170 мкВ, а при явлениях бруксизма могут наблюдаться и более высокие амплитуды. Длительность латентного периода мандибулярного рефлекса увеличивается более чем в 2 раза.

В фазе одного жевательного движения время БЭП уменьшается, а время БЭА увеличивается.
ЭМГ-активность мышц-поднимателей при мышечно-суставной дисфункции уменьшается, а мышц дна полости рта увеличивается [Хватова В.А., 1986].

Степень нарушений ЭМГ-активности мышц соответствует степени выраженности болевого синдрома. У больных с полным регрессом клинических проявлений дисфункции после лечения параметры ЭМГ-исследования и латентное время подбородочного рефлекса приближаются к норме. В то же время в группе лиц с остаточными явлениями заболевания в конце курса лечения сохраняются изменения ЭМГ-картины: снижение БЭА мышц и увеличение латентного времени проведения рефлекса [Семенов И.Ю., 1997].

J.Travell, D.Simons (1989) обнаружили при болевом синдроме дисфункции ВНЧС триггерные точки (ТТ) в жевательных мышцах — участки повышенной раздражимости мышечной ткани, болезненной при сдавливании, из которых иррадиация боли происходит в определенные зоны.

Рекомендуем почитать

Наверх