Динамические прогибы при падении груза. Удар – что характерно для него? Динамические нагрузки, допустимые

Рецепты 31.10.2022
Рецепты

Нагрузки, не удовлетворяющие условиям плавности нагружения, называются ударными.

Физические условия разрушения при ударной нагрузке сильно отличаются от статических. В условиях далеких от разрушения статическую и ударную нагрузки можно сравнивать по их деформирующему эффекту, считая, что равные деформации есть признак эквивалентности нагружения.

Из повседневного опыта известно, что при падении груза на балку прогиб будет больше, чем просто от веса груза. Почему это происходит?

Пусть груз падает на балку с высоты
(рис. 195). При соприкосновении с балкой груз имеет скорость

За очень малый промежуток времени соударения скорость уменьшается до нуля. Приближенно вычислим среднюю величину ускорения

С корость направлена вниз, ускорение будет направлено вверх, так как движение замедляется. Время соударения принимают равным=0,010,001 сек; так как эта величина стоит в знаменателе, ускорение будет велико. При наличии ускорения всегда есть сила инерции, которая в данном случае будет тоже велика.

Сила инерции противоположна ускорению, то есть направлена вниз. В момент удара к весу груза добавляется сила инерции, поэтому ударная сила в несколько раз больше статической. Соответственно, деформация от ударной нагрузки в несколько раз больше. Сложность расчета состоит в том, что вычислить ударную силу как сумму
не удается, так как ускорение переменное и закон его изменения не поддается определению. Расчет проводится по балансу энергий.

Расчет на удар сводится к статическому введением динамического коэффициента, который указывает, во сколько раз при ударе деформация и сила больше чем при статическом приложении равного груза.

    Определение динамического коэффициента при ударе

(без учета массы ударяемой системы)

Принимаем упрощающие допущения:

    Удар абсолютно неупругий, т.е. после соударения падающий груз и ударяемая система движутся вместе с одинаковой скоростью.

    Масса ударяемой системы намного меньше веса падающего груза.

    При ударе справедлив закон Гука.

Вычислим динамический коэффициент для случая продольного и поперечного (изгибающего) удара (рис. 196).

Обозначим:
- вес груза

-высота падения

-скорость в момент удара

-максимальное перемещение центра удара.

На диаграмме (
, ) закону Гука соответствует прямая линия. Из справедливости закона Гука следует

,

При ударе кинетическая энергия падающего груза переходит в потенциальную энергию упругой деформации системы
.

Вычислим и
. По закону изменения кинетической энергии можно записать

.

Падение происходит из состояния покоя, поэтому

.

Работа силы тяжести равна произведению силы на путь

Таким образом, получаем

При вычислении потенциальной энергии деформации упругой системы предполагается, что при динамической нагрузке она вычисляется, как и при статической, а следовательно равна площади диаграммы (
,);

Приравниваем энергии

Решение уравнения со знаком минус не годится, так как
всегда больше
.

Получили формулу для динамического коэффициента при ударе:

More meanings of this word and English-Russian, Russian-English translations for the word «ДИНАМИЧЕСКИЙ УДАР» in dictionaries.

  • УДАР — m. impact, blow, stroke, shock, thrust; упругий удар, elastic impact
  • ДИНАМИЧЕСКИЙ — adj. dynamic, power, forced; динамическая система, dynamical system
    Russian-English Dictionary of the Mathematical Sciences
  • УДАР — Collision
  • ДИНАМИЧЕСКИЙ — Dynamic
    Русско-Американский Английский словарь
  • УДАР — 1. (в разн. знач.) blow; stroke; воен. тж. thrust; (острым оружием) stab; (плетью) lash, …
  • ДИНАМИЧЕСКИЙ — dynamic(al)
    Англо-Русско-Английский словарь общей лексики - Сборник из лучших словарей
  • УДАР — body blow He has had a good many ups and downs in his life but his wife"s leaving him was …
  • ДИНАМИЧЕСКИЙ — ~ный dynamic dynamic
    Русско-Английский словарь общей тематики
  • УДАР — 1) beat 2) blow 3) impact 4) shock 5) физиол. stroke
    Новый Русско-Английский биологический словарь
  • УДАР — Impact
    Russian Learner"s Dictionary
  • УДАР — knock
    Russian Learner"s Dictionary
  • ДИНАМИЧЕСКИЙ — dynamic
    Russian Learner"s Dictionary
  • УДАР
    Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — dynamic(al)
    Русско-Английский словарь
  • УДАР — м. 1. (в разн. знач.) blow; stroke; воен. тж. thrust; (острым оружием) stab; (плетью) …
  • ДИНАМИЧЕСКИЙ — dynamic(al)
    Russian-English Smirnitsky abbreviations dictionary
  • УДАР — beat, blow, brunt, bump, clashing, crack, impulse, flap, hit, impact, impingement, kick, percussion, impact shock, shock, slap, stroke, thrust
  • ДИНАМИЧЕСКИЙ — dynamics, (о нагрузке) live
    Русско-Английский словарь по машиностроению и автоматизации производства
  • УДАР — муж. 1) (в разл. знач.) blow; воен. тж. thrust; (острым оружием) stab; (плетью) lash, slash; (ногой, копытом …
  • ДИНАМИЧЕСКИЙ — прил. dynamic
    Русско-Английский краткий словарь по общей лексике
  • УДАР — (механический) impulse, impact, knap, blow, cant, collision, shock, hit, jab, kick, knock, percussion, stroke, thrust
  • ДИНАМИЧЕСКИЙ — dynamic
    Русско-Английский словарь по строительству и новым строительным технологиям
  • УДАР — Collision
  • ДИНАМИЧЕСКИЙ — Vigorous
    Британский Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — Sprightly
    Британский Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — Peppy
    Британский Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — Go-ahead
    Британский Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — Dynamics
    Британский Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — Dynamic
    Британский Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — Bouncy
    Британский Русско-Английский словарь
  • УДАР — impulse, impulsion, kick, knock
  • ДИНАМИЧЕСКИЙ — dynamic
    Русско-Английский экономический словарь
  • УДАР — см. Размах на рубль — удар на копейку; см. Размах рублевый, удар фиговый
    Англо-Русско-Английский словарь сленга, жаргона, русских имен
  • УДАР — 1. blow (тж. перен.) (рубящий) chop; (колющий) stab, thrust; (столкновение) impact; (звук от толчка, сотрясения) crash, thud; ~ ногой kick; наносить ~ кому-л. deal*/strike* smb. a …
  • ДИНАМИЧЕСКИЙ — ~ный dynamic
    Русско-Английский словарь - QD
  • УДАР — blow
    Русско-Английский юридический словарь
  • УДАР — . Each impact of a molecule with (or on) a wall of the container ... . The impact …
    Русско-Английский научно-технический словарь переводчика
  • ДИНАМИЧЕСКИЙ — run-time
    Современный Русско-Английский словарь по машиностроению и автоматизации производства
  • УДАР — м. shock; beat; bump; knock - обратный удар
    Русско-Aнглийский автомобильный словарь
  • УДАР — impact
  • ДИНАМИЧЕСКИЙ — dynamic
    Русско-Английский толковый словарь терминов и сокращений по ВТ, Интернету и программированию
  • УДАР — m impact
    Russian-English WinCept Glass dictionary
  • УДАР — impact
    Русско-Английский биологический словарь
  • УДАР — муж. 1) (в различных значениях) blow воен. тж. thrust (острым оружием) stab (плетью) lash, slash (ногой, копытом) kick (кулаком) punch, …
  • ДИНАМИЧЕСКИЙ — прил. dynamic динамич|еский -, ~ный dynamic
    Большой Русско-Английский словарь
  • УДАР — удар nock;kick;hit
  • ДИНАМИЧЕСКИЙ — динамический dynamic
    Русско-Английский словарь Сократ
  • STROKE
  • STRIKE
    Большой Англо-Русский словарь
  • KICK
    Большой Англо-Русский словарь
  • DYNAMICIZER — I параллельно - последовательный преобразователь II устройство преобразования (данных) из статической формы в динамическую; динамический регистр dynamicizer вчт. динамический регистр
    Большой Англо-Русский словарь
  • DYNAMICAL — прил. динамический Syn: dynamic динамический - * test (техническое) испытание на удар динамичный; активный, энергичный; движущий; живой - * …
    Большой Англо-Русский словарь

Основные положения

Явление удара получается в том случае, когда скорость рассматриваемой части конструкции или соприкасающихся с ней частей изменяется в очень короткий период времени.

При забивке свай тяжелый груз падает с некоторой высоты на верхний торец сваи и погружает ее в грунт; баба останавливается почти мгновенно, вызывая удар. Аналогичные явления происходят при ковке; удар испытывают и проковываемое изделие и шток молота с бойком, так как последний очень быстро останавливается при соприкосновении с изделием. Во время удара между обеими ударяющимися деталями возникают весьма большие взаимные давления. Скорость ударяющего тела за очень короткий промежуток времени изменяется и в частном случае падает до нуля; тело останавливается. Значит, на него от ударяемой детали передаются очень большие ускорения, направленные в сторону, обратную его движению, т. е. передается реакция , равная произведению массы ударяющего тела на это ускорение.

Обозначая это ускорение через а, можно написать, что реакция , где Q — вес ударяющего тела. По закону равенства действия и противодействия на ударяемую. часть конструкции передается такая же сила, но обратно направленная (рис.1). Эти силы и вызывают напряжения в обоих телах.


Рис.1. Расчетная схема ударного нагружения.

Таким образом, в ударяемой части конструкции возникают такие напряжения, как будто к ней была приложена сила инерции ударяющего тела; мы можем вычислить эти напряжения, рассматривая силу инерции как статическую нагрузку нашей конструкции. Затруднение заключается в вычислении этой силы инерции. Продолжительности удара, т. е. величины того промежутка времени, в течении которого происходит падение скорости до нуля, мы не знаем. Поэтому остается неизвестной величина ускорения а , а стало быть, и силы . Таким образом, хотя вычисление напряжений при ударе представляет собой частный случай задачи учета сил инерции, однако для вычисления силы и связанных с ней напряжений и деформаций здесь приходится применять иной прием и пользоваться законом сохранения энергии.

При ударе происходит очень быстрое превращение одного вида энергии в другой: кинетическая энергия ударяющего тела превращается в потенциальную энергию деформации. Выражая эту энергию в функции силы или напряжений, или деформаций получаем возможность вычислить эти величины.

Общий прием вычисления динамического коэффициента при ударе.

Предположим, что очень жесткое тело А весом Q , деформацией которого можно пренебречь, падая с некоторой высоты H , ударяет по другому телу B , опирающемуся на упругую систему С (рис.2). В частном случае это может быть падение груза на конец призматического стержня, другой конец которого закреплен (продольный удар), падение груза на балку, лежащую на опорах (изгибающий удар), и т. п.


Рис.2. Динамическая модель ударного нагружения.

В течение очень короткого промежутка времени упругая система С испытает некоторую деформацию. Обозначим через перемещение тела В (местной деформацией которого пренебрежем) в направлении удара. В упомянутых частных случаях при продольном ударе за перемещение соответственно нужно считать продольную деформацию стержня , при изгибающем ударе — прогиб балки в ударяемом сечении и т. п. В результате удара в системе С возникнут напряжения ( или — в зависимости от вида деформации).

Полагая, что кинетическая энергия Т ударяющего тела полностью переходит в потенциальную энергию деформации упругой системы, можем написать:

Вычислим теперь . При статической деформации потенциальная энергия численно равна половине произведения действующей силы на соответствующую деформацию:

Статическая деформация в ударяемом сечении может быть вычислена по закону Гука, который в общем виде можно записать так:

или

Здесь с — некоторый коэффициент пропорциональности (называемый иногда жесткостью системы); он зависит от свойств материала, формы и размеров тела, вида деформации и положения ударяемого сечения. Так, при простом растяжении или сжатии , и ; при изгибе балки, шарнирно закрепленной по концам, сосредоточенной силой Q посредине пролета и ; и т.д.

Таким образом, выражение для энергии может быть переписано так:

В основу этой формулы положены две предпосылки: а) справедливость закона Гука и б) постепенный — от нуля до окончательного значения — рост силы Q , напряжений и пропорциональных им деформаций .

Опыты с определением модуля упругости по наблюдениям над упругими колебаниями стержней показывают, что и при динамическом действии нагрузок закон Гука остается в силе, и модуль упругости сохраняет свою величину. Что касается характера нарастания напряжений и деформаций, то и при ударе деформация происходит, хотя и быстро, но не мгновенно; постепенно растет в течение очень короткого промежутка времени от нуля до окончательного значения; параллельно росту деформаций возрастают и напряжения .

Реакция системы С на действие упавшего груза Q (назовем ее ) является следствием развития деформации ; она растет параллельно от нуля до окончательной, максимальной величины и, если напряжения не превосходят предела пропорциональности материала, связана с ней законом Гука:

где с — упомянутый выше коэффициент пропорциональности, сохраняющий свое значение и при ударе.

Таким образом, обе предпосылки для правильности формулы (3) принимаются и при ударе. Поэтому можно считать, что вид формулы для при ударе будет тот же, что и при статическом нагружении системы С силой инерции , т. е.

(Здесь учтено, что по предыдущему .) Подставляя значения Т и в уравнение (1), получаем:

или, удерживая перед радикалом для определения наибольшей величины деформации системы в направлении удара знак плюс, получаем:

Из этих формул видно, что величина динамических деформаций, напряжений и усилий зависит от величины статической деформации, т. е. от жесткости и продольных размеров ударяемого тела; ниже это дополнительно будет показано на отдельных примерах. Величина

Кроме того, так как

где —энергия ударяющего тела к моменту начала удара, то выражение для динамического коэффициента может быть представлено еще и в таком виде:

Если мы в формулах (4) и (5) положим , т. е. просто сразу приложим груз Q , то и ; при внезапном приложении силы Q деформации и напряжения вдвое больше, чем при статическом действии той же силы.

Наоборот, если высота падения груза Н (или скорость ) велика по сравнению с деформацией , то в подкоренном выражении формул (4) — (8) можно пренебречь единицей по сравнению с величиной отношения . Тогда для и получаются следующие выражения:

Динамический коэффициент в этом случае определяется по формуле

Необходимо отметить, что в то время как пренебрежение единицей 2Н в подкоренном выражении допустимо уже при (неточность приближенных формул будет не больше 5%). пренебрежение единицей, стоящей перед корнем, допустимо лишь при очень большой величине отношения .

Так, например, для того чтобы приближенные формулы (11) и (12) давали погрешность не более 10%, отношение должно быть больше 110.

Формулы и , в которых выражается через , могут быть использованы также для решения задачи о встречном ударе тел, двигающихся с некоторой скоростью, при определении напряжений в цилиндре двигателя внутреннего сгорания, вызванных резким повышением давления газа при вспышке горючей смеси и др. На этом основании их можно считать общими формулами для расчета на удар.

Обобщая сказанное выше, можем наметить следующий общий прием решения задач на определение напряжений при ударе. Применяя закон сохранения энергии, надо:

1) вычислить кинетическую энергию ударяющего тела Т ;

2) вычислить потенциальную энергию тел, воспринимающих удар, под нагрузкой их силами инерции при ударе; потенциальная энергия должна быть выражена через напряжение (,) в каком-либо сечении, через деформацию (удлинение, прогиб) или через силу инерции ударяющего тела;

3) приравнять величины и Т и из полученного уравнения найти или непосредственно динамическое напряжение, или деформацию, а по ней, пользуясь законом Гука, напряжение или силу и соответствующие ей динамические напряжения и деформации.

Описанный общий прием расчета на удар предполагает, что вся кинетическая энергия ударяющего тела целиком переходит в потенциальную энергию деформации упругой системы. Это предположение не точно. Кинетическая энергия падающего груза частично превращается в тепловую энергию и энергию неупругой деформации основания, на которое опирается система.

Вместе с тем при высоких скоростях удара деформация за время удара не успевает распространиться на весь объем ударяемого тела и в месте удара возникают значительные местные напряжения, иногда превосходящие предел текучести материала. Так, например, при ударе свинцовым молотком по стальной балке большая часть кинетической энергии превращается в энергию местных деформаций. Подобное же явление может иметь место даже и в том случае, когда скорость удара мала, но жесткость или масса ударяемой конструкции велика.

Указанные случай соответствуют большим величинам дроби . Поэтому можно сказать, что описанный выше метод расчета применим, пока дробь не превышает определенной величины. Более точные исследования показывают, что ошибка не превышает 10% если . Так как эта дробь может быть представлена в виде отношения , то можно сказать, что изложенный метод применим, пока энергия удара превышает не более чем в 100 раз потенциальную энергию деформации, соответствующую статической нагрузке конструкции весом ударяющего груза. Учет массы ударяемого тела при ударе позволяет несколько расширить пределы применимости этого метода в тех случаях, когда масса ударяемого тела велика.

Более точная теория удара излагается в курсах теории упругости.

Работа машин во многих случаях связана с ударными нагрузками, которые могут быть обусловлены либо назначением этих машин (например, ковочное оборудование), либо же являются нежелательным следствием условий работы машин или различных конструктивных факторов (например, удары на колеса автомобиля при преодолении препятствий; удары на шатунные болты при выплавке шатунных подшипников).

Ударом называется явление, когда при соприкосновении ударяющего тела и конструкции их относительная скорость изменяется на конечную величину за промежуток времени, пренебрежимо малый по сравнению с периодом свободного колебания конструкции. Обычно это время составляют доли секунды.

Характерной чертой удара является то, что деформация системы, воспринимающей удар, получается не только за счет массы, наносящей удар, но, главным образом, за счет той кинетической энергии, которой эта масса обладает в начале воздействия на систему. При этом возникают большие ускорения и большие инерционные силы, которые в основном и определяют силу удара.

Определение напряжений и деформаций при ударе является одной из наиболее сложных задач сопротивления материалов. Поэтому в инженерной практике применяют так называемый приближенный метод расчета на удар, базирующийся на следующих основных допущениях:

  • 1) в элементе конструкции, воспринимающей удар, возникают напряжения, не превосходящие предела пропорциональности, таким образом, закон Гука сохраняет свою силу при ударе;
  • 2) удар является абсолютно неупругим, т. е. тела после удара не отталкиваются друг от друга;
  • 3) тело, наносящее удар, является абсолютно жестким, а значит, не деформируется;
  • 4) местные деформации в зоне удара и рассеяние энергии при ударе не учитываются.

Рассмотрим основные виды ударов.

Продольный удар. В качестве примера рассмотрим систему с одной степенью свободы, которая представляет собой пружину с коэффициентом жесткости с и падающий на нес груз масс- сой т с высоты Я (рис. 109, а).

Определение силы удара весьма затруднительно, так как неизвестно время соударения, поэтому в инженерной практике обычно пользуются энергетическим методом.

Рис. 109. Динамическая модель ударного нагружения: а ) падение груза с высоты Я; б) удар о пружину; в) возвратное движение груза

Груз т при касании пружины будет обладать кинетической энергией К , которую можно выразить через скорость v K груза в момент касания или высоту Я:

После того как груз коснется пружины, он начнет деформировать пружину. Когда вся кинетическая энергия груза перейдет в потенциальную энергию сжатой пружины, груз остановится (рис. 109, б), пружина получит свою наибольшую динамическую деформацию бд, а сила, сжимающая пружину, достигнет максимума. При составлении энергетического баланса здесь необходимо учитывать изменение потенциальной энергии груза на динамической деформации З л:

Упругая энергия сжатой пружины определяется по формуле

Составим энергетический баланс

или m-g-Hл-mg-S u =--, который можно представить в следующем виде:

В результате рассмотрения статического равновесия упругой системы (рис. 109, в) следует, что отношение силы тяжести груза к жесткости пружины равно статической деформации пружины S CT:

Получили квадратное уравнение, из которого динамическая деформация определится как

Поскольку знак «минус» в этом выражении не соответствует физической стороне рассматриваемой задачи, следует сохранить знак «плюс». Запишем выражение (162) в виде

Величину, стоящую в скобках, называют динамическим коэффициентом:

Динамический коэффициент, выраженный через скорость груза в момент касания пружины, с учетом выражения (10.3) будет равен

Окончательно динамическая деформация пружины определится как

Из формулы (166) следует, что при продольном ударе, чем больше длина стержня и чем меньше его жесткость, тем меньше динамический коэффициент, а следовательно, меньше динамическая сила и динамическое напряжение. Этим можно объяснить, что тросы, соединяющие тягач с буксируемым объектом, не должны быть короткими. Короткий трос при случайном ударе (трогании буксируемого объекта с места или из-за случайных препятствий на дороге) не выдерживает динамической нагрузки и разрывается.

Динамический коэффициент показывает, во сколько раз деформация при ударе больше деформации при статическом приложении нагрузки. В том же отношении изменяются внутренние силы и напряжения:

Из анализа выражений (164) и (165) видно, что динамический коэффициент зависит от кинетической энергии падающего груза. В случае, если груз опускается на упругую систему мгновенно, без начальной скорости (Я = 0), динамическая деформация уже вдвое превышает статическую. Соответственно, в два раза большими оказываются и напряжения.

Динамический коэффициент, а следовательно, и динамические напряжения, также зависят от жестокости упругой системы. При большей жесткости статические деформации имеют меньшие значения, а динамические напряжения при этом увеличиваются. Поэтому снижение напряжений при ударе может быть достигнуто уменьшением жесткости системы.

NB: зависимости для определения динамических напряжений и деформаций, полученные на примере падения груза на пружину, применимы и для других упругих систем: при расчете на удар при растяжении - сжатии, кручении и изгибе.

В каждом случае придерживаются следующего порядка расчета: а) в месте падения груза к упругой системе прикладывают статическую нагрузку, равную весу падающего груза;

  • б) определяют статическую деформацию упругой системы;
  • в) определяют напряжения в материале, возникающие от приложения статической нагрузки;
  • г) определяют коэффициент динамичности;
  • д) определяют динамические напряжения и деформации,
  • е) сравнивают напряжения при ударе с допускаемыми напряжениями:

Обычно коэффициент запаса п принимают равным и т = 2.

В полученных выражениях не учтена масса упругой системы, к которой прикладывается ударная нагрузка. Учет массы даег меньшие значения динамических напряжений, поэтому, рассчитывая конструкции без учета ее массы, мы получаем дополнительный запас прочности.

Поперечный удар. В результате падения груза массой т с высоты Я, балка будет испытывать изгибной или поперечный удар (рис. 110). При поперечном ударе можно пользоваться формулами (164), (165), (166), (167), если в них величину принять за прогиб при статическом нагружении.

Рис. 110.

Скручивающий удар. На рис. 111 приведен вал, на левом конце которого закреплен диск с моментом инерции J m . Вал вращается с угловой скоростью ш. При внезапном торможении правого конца вала вся кинетическая энергия диска перейдет в потенциальную энергию деформации вала: К = U, где

Рис. 111.

Так как наибольшие касательные напряжения в сечении Т

т =-, то с учетом выражения (170) найдем максимальное ди-

намическое напряжение:

где W p - момент сопротивления сечения кручению.

Для определения максимального угла закручивания вала при торможении воспользуемся формулой угла закрутки при кручении, которая с учетом (170) принимает вид

Пример 34. На стальную балку двутаврового поперечного сечения по середине пролета падает груз массой т - 100 кг (рис. 112). Длина балки / = 3м; высота падения h = 10 мм. Для двутавра № 24, а из таблицы сортамента определяем J x = 3800 см 4 ; W x - 317 см 3 ; J y = 260 см 4 ; W y = 41,6 см 3 . Необходимо сопоставить наибольшие статические и динамические напряжения в поперечном сечении балки и прогибы под грузом для случаев изгиба балки в плоскости наибольшей и наименьшей жесткости.


Рис. 112.

Рассмотрим сначала случай изгиба балки в плоскости наибольшей жесткости. Наибольшие нормальные напряжения в поперечном сечении балки при статическом ее нагружении составляют

Динамический коэффициент при поперечном ударе

где S„ - прогиб балки посередине пролета при статическом нагружении:

Определим динамический прогиб и наибольшие динамические напряжения, возникающие в балке при падении груза:

Во втором случае, при изгибе балки в плоскости наименьшей жесткости, аналогично получаем


Тогда динамический прогиб и наибольшие динамические напряжения в балке при ее изгибе в плоскости наименьшей жесткости

При статическом действии нагрузки напряжения во втором случае больше, чем в первом, в 7,63 раза, а при ее ударном действии - лишь в 2,36 раза. Это различие объясняется тем, что во втором случае жесткость балки значительно (в 14,6 раза) меньше, чем в первом, что приводит к существенному уменьшению динамического коэффициента.

Удар - это происходящее в результате соприкосновения взаимодействие движущихся тел.

Удар – что характерно для него?

Удар характеризуется резким изменением скоростей частиц взаимодействующих тел за малый промежуток времени, при этом сила удара достигает очень большого значения. В качестве примера можно привести действие кузнечного молота на кусок металла, удар падающего груза при забивке свай, воздействие колеса вагона на рельс при перекатывании через стык.

Удар – допущения при расчете

За время совершения удара очень трудно произвести измерения, связанные с определением силы удара. Поэтому обычно производится условный расчет на удар , по которому определяются внутренние силы и перемещения, возникающие в стержне. Сначала определяется наибольшее динамическое перемещение точки стержня, по которой наносится удар, а затем определяется напряженное состояние стержня.

Существуют следующие допущения при расчете стержня на удар:

Допущение 1: деформация стержня, вызванная ударной нагрузкой, описывается законом Гука, а сам стержень является линейно деформируемой системой. При этом модуль Юнга имеет такое же значение, как и при статическом нагружении стержня;

Допущение 2: работа, совершаемая падающим грузом, полностью переходит в потенциальную энергию деформации стержня;

Допущение 3: масса стержня, воспринимающего удар, пренебрежимо мала по сравнению с массой падающего груза;

Допущение 4: удар считается неупругим.

Динамический прогиб при ударе

Рассмотрим удар груза весом G, падающего с высоты h на балку (рис. 13.3).

Обозначим – динамический прогиб балки в месте падения груза.

Работа, совершаемая падающим грузом, равна: . Согласно допущению 2 , работа полностью переходит в потенциальную энергию деформации балки (V). По теореме Клапейрона потенциальная энергия деформации равна половине произведения некоторой динамической силы () на соответствующее ей динамическое перемещение (): .

Учитывая, что статический прогиб балки в месте падения груза G, вызванный его статическим приложением, равен , получим уравнение динамического прогиба балки: . Отсюда .

Динамический прогиб балки в месте падения груза: , где – коэффициент динамичности. .

Рекомендуем почитать

Наверх